5. Sınıf Matematik Kazanımları

OdevTest
OdevTest
Aralık 22, 2018

5. SINIF MATEMATİK KAZANIM VE AÇIKLAMALARI


M.5.1. SAYILAR VE İŞLEMLER
M.5.1.1. Doğal Sayılar
M.5.1.1.1.
En çok dokuz basamaklı doğal sayıları okur ve yazar.
M.5.1.1.2. En çok dokuz basamaklı doğal sayıların bölüklerini, basamaklarını ve rakamların basamak değerlerini
belirtir.
Bu sayıları gerçek hayatla ilişkilendirme durumlarında karşılaştırma ve anlamlandırmaya yönelik çalışmalara yer verilir.
M.5.1.1.3. Kuralı verilen sayı ve şekil örüntülerinin istenen adımlarını oluşturur.
a) Sadece adımlar arasındaki farkı sabit olan örüntülerle sınırlı kalınır.
Örneğin 7’den başlayarak üçer ilave etmek suretiyle oluşan sayı örüntüsünün 6. adımını bulunuz.
Koleksiyonuna birinci haftada 7 bilye ile başlayan Büşra, sonraki her hafta 3 bilye ilave ederse 5 hafta
sonra koleksiyonunda kaç bilye olur?
Örneğin aşağıdaki şekil örüntüsünde kare ve üçgen sayılarını sayı örüntüsü olarak belirtmeye veya
istenilen adımda kaç tane kare veya üçgen olacağını bulmaya yönelik çalışmalara yer verilir.
b) Şekil örüntülerine tarihî ve kültürel eserlerimizden örnekler (mimari yapılar, halı süslemeleri, kilim vb.) verilir.
M.5.1.2. Doğal Sayılarla İşlemler
M.5.1.2.1.
En çok beş basamaklı doğal sayılarla toplama ve çıkarma işlemi yapar.
M.5.1.2.2. İki basamaklı doğal sayılarla zihinden toplama ve çıkarma işlemlerinde strateji belirler ve kullanır.
Olası stratejiler: Onlukları ve birlikleri ayırarak ekleme (45+22=45+20+2); üzerine sayma
(38+23=38+10+10+3); sayıları 10’u referans alarak parçalama (16+8=16+4+4=20+4); kolay
toplanan sayılardan başlama (13+28+27=13+27+28=40+28); onlukları ve birlikleri ayırarak çıkarma
(45-22=45-20-2); onar onar eksiltme (38-23=38-10-10-3).
M.5.1.2.3. Doğal sayılarla toplama ve çıkarma işlemlerinin sonuçlarını tahmin eder.
Tahmin becerilerinin gelişmesi için tahminlerin, işlem sonuçlarıyla karşılaştırılması yapılır.
M.5.1.2.4. En çok üç basamaklı iki doğal sayının çarpma işlemini yapar.
M.5.1.2.5. En çok dört basamaklı bir doğal sayıyı, en çok iki basamaklı bir doğal sayıya böler.
Kalanlı bölme işlemlerinde ondalık gösterimlere girilmez.
M.5.1.2.6. Doğal sayılarla çarpma ve bölme işlemlerinin sonuçlarını tahmin eder.
Tahmin etmenin önemi vurgulanarak, tahmin becerilerinin gelişmesi için işlem sonuçlarıyla tahminlerin
karşılaştırılması yapılır.

M.5.1.2.7. Doğal sayılarla zihinden çarpma ve bölme işlemlerinde uygun stratejiyi belirler ve kullanır.
Olası stratejiler: 10, 100, 1000 ve katlarıyla çarpma ve bölme yaparken sayının sonuna 0 ekleme veya
çıkarma; 8 ile çarpmak için üç kez iki katını alma; 9 ile çarpmak için 10 ile çarpıp sonuçtan bir kez
kendisini çıkarma; sayılardan birisinin yarısı ile diğerinin iki katını alarak çarpma; 5 ile çarpmak için
sonuna 0 ekleyip yarısını alma; bir sayıyı 5’e bölmek için iki katını alıp 10’a bölme vb.
M.5.1.2.8. Bölme işlemine ilişkin problem durumlarında kalanı yorumlar.
Problem durumuna göre kalan ihmal edilir veya kesir olarak belirtilir. Örneğin 11 adet elmayı 2 kişiye eşit
olarak paylaştırırken 1 kişiye ne kadar elma düşeceğini bulmak için kalan elma sayısı kesirle ifade edilir.
M.5.1.2.9. Çarpma ve bölme işlemleri arasındaki ilişkiyi anlayarak işlemlerde verilmeyen ögeleri (çarpan, bölüm
veya bölünen) bulur.
a) Bir çarpma veya bölme işleminde verilmeyen ögeyi bulmaya yönelik çalışmalara yer verilir. Örneğin
4 × ? = 36 ifadesinde 4’ü hangi sayı ile çarptığımızda 36 edeceğinin bulunması için 36’nın 4’e bölünmesi gerektiği gösterilebilir.
b) Çarpma ve bölme işlemleri arasındaki ilişkiyi problem durumlarında kullanmaya yönelik çalışmalara yer verilir. Aynı problem durumu bilinmeyenin ne olduğuna bağlı olarak çarpma veya bölme işlemi yapmayı gerektirebilir. Örneğin her hafta 5 TL harçlık alan Ahmet 7 hafta boyunca parasını biriktirmiştir. Bu süre içinde biriktirdiği tüm parasıyla bir flüt almıştır. Ahmet flütü kaç liraya almıştır? Aynı duruma ilişkin, bu kez bölme işlemi yapmayı gerektiren diğer bir soru ise şöyle belirtilebilir: Her hafta annesinden 5 TL harçlık alan Ahmet, fyatı 35 TL olan bir flüt almak için parasını biriktirmektedir. Kaç hafta sonra Ahmet istediği flütü almış olur?
M.5.1.2.10. Bir doğal sayının karesini ve küpünü üslü ifade olarak gösterir ve değerini hesaplar.
M.5.1.2.11. En çok iki işlem türü içeren parantezli ifadelerin sonucunu bulur.
Örneğin 5² x (12 – 6 ) veya 16 ÷ (4×2) gibi işlemlerde parantezin rolünü anlamaya ve parantezi kullanmaya yönelik çalışmalara yer verilir.
M.5.1.2.12. Dört işlem içeren problemleri çözer.
a) Doğal sayılarla en çok üç işlemli problemler ele alınır.
b) Problem kurmaya yönelik çalışmalara da yer verilir.
M.5.1.3. Kesirler
M.5.1.3.1.
Birim kesirleri sayı doğrusunda gösterir ve sıralar.
Birim kesirlerin hangi büyüklükleri temsil ettiği uygun modellerle de incelenir. Örneğin 1/3 kesri bir bütünün 3’te 1’ini temsil ederken 1/6 kesri aynı bütünün 6’da 1’lik bir kısmını, yani daha küçük bir miktarını temsil eder. Dolayısıyla 1/6 kesri 3’te 1 kesrinden daha küçüktür.
M.5.1.3.2. Tam sayılı kesrin, bir doğal sayı ile bir basit kesrin toplamı olduğunu anlar ve tam sayılı kesri bileşik
kesre, bileşik kesri tam sayılı kesre dönüştürür.
Uygun kesir modellerinden yararlanılır.
M.5.1.3.3. Bir doğal sayı ile bir bileşik kesri karşılaştırır.
Her doğal sayının, paydası 1 olan kesir olarak ifade edilebileceğine vurgu yapılır.
M.5.1.3.4. Sadeleştirme ve genişletmenin kesrin değerini değiştirmeyeceğini anlar ve bir kesre denk olan kesirler
oluşturur.
İşlemsel uygulamalara geçmeden önce kesir modelleri ile kavramsal çalışmalara yer verilir.
M.5.1.3.5. Payları veya paydaları eşit kesirleri sıralar.
Birinin paydası diğerinin paydasının katı olan kesirleri sıralamaya yönelik örneklere de yer verilir.
M.5.1.3.6. Bir çokluğun istenen basit kesir kadarını ve basit kesir kadarı verilen bir çokluğun tamamını birim kesirlerden yararlanarak hesaplar.
Çoklukların birim kesir kadarını bulurken uygun modeller ile kavramsal çalışmalara yer verilir. Doğal sayı
ile kesrin çarpımı işlemine girilmez.
M.5.1.4. Kesirlerle İşlemler
M.5.1.4.1.
Paydaları eşit veya birinin paydası diğerinin paydasının katı olan iki kesrin toplama ve çıkarma işlemini
yapar ve anlamlandırır.
a) Gerçek hayat durumlarında bu işlemler yorumlanır. Örneğin bir pizzanın 3/5 ’ünü yiyen çocuk aynı pizzanın 1/10 ’ini yiyen çocuktan ne kadar fazla pizza yemiştir?
b) Bir doğal sayıyla bir kesrin toplama işlemi ve bir doğal sayıdan bir kesri çıkarma işlemleri de ele alınır.
M.5.1.4.2. Paydaları eşit veya birinin paydası diğerinin paydasının katı olan kesirlerle toplama ve çıkarma işlemleri gerektiren problemleri çözer ve kurar.
M.5.1.5. Ondalık Gösterim
Terimler veya kavramlar:
ondalık gösterim, tam kısım, ondalık kısım
M.5.1.5.1. Bir bütün 10, 100 veya 1000 eş parçaya bölündüğünde, ortaya çıkan kesrin birimlerinin ondalık gösterimle ifade edilebileceğini belirler.
a) Ondalık gösterimin kesrin farklı bir ifade biçimi olduğu fark ettirilir.
b) Modeller kullanılarak ondalık gösterim ile kesirler arasında ilişki kurmaları sağlanır.
c) Paydası 10,100 veya 1000 olan kesir modelleri ile etkinlikler yapılır.
ç) Ondalık gösterimlerin okunuşları üzerinde durulur. Örneğin 5,2 sayısı, “beş tam onda iki” şeklinde okunur.
d) Ondalık kısmı en çok üç basamaklı olan sayılarla çalışma yapılır.
M.5.1.5.2. Paydası 10, 100 veya 1000 olan bir kesri ondalık gösterim şeklinde ifade eder.
Basit kesirlerle veya tam sayılı kesirlerle yazma çalışmaları yapılır.
M.5.1.5.3. Ondalık gösterimde tam kısım ve ondalık kısımdaki rakamların bulunduğu basamağın değeriyle iliş-
kisini anlar.
Ondalık kısmı en çok üç basamaklı olan ondalık gösterimlerle sınırlı kalınır.
M.5.1.5.4. Paydası 10, 100 veya 1000 olacak şekilde genişletilebilen veya sadeleştirilebilen kesirlerin ondalık
gösterimini yazar ve okur.
a) Kesirleri paydası 10, 100 veya 1000 olacak şekilde genişletirken modeller kullanmaya yönelik çalışmalara
da yer verilir.
b) Ondalık gösterimleri tam sayılı kesirlerle ilişkilendirir. Örneğin 3,5 = 3 .
1/2 gibi eşitliklerin anlaşılmasına
yönelik çalışmalar yapılır.

M.5.1.5.5. Ondalık gösterimleri verilen sayıları sayı doğrusunda gösterir ve sıralar.
a) Sıralama yapılırken eşit, büyük veya küçük sembollerinden uygun olan kullanılır.
b) Uygun kesir modellerinden de yararlanılır.
c) Ondalık kısmı en çok üç basamaklı olan ondalık gösterimlerle sınırlı kalınır.
M.5.1.5.6. Ondalık gösterimleri verilen sayılarla toplama ve çıkarma işlemleri yapar.
a) Toplama ve çıkarma işlemlerinde virgüllerin neden alt alta gelmesi gerektiği ele alınır.
b) Toplama ve çıkarma işlemlerinin kesirlerle yapılan işlemlerle ilişkilendirilmesi gibi durumlar da
incelenir.
c) Paralarımızla ilgili lira-kuruş ilişkisini ifade eden ondalık gösterim çalışmalarına da yer verilir.
M.5.1.6. Yüzdeler
M.5.1.6.1.
Paydası 100 olan kesirleri yüzde sembolü (%) ile gösterir.
Yüzde sembolünü (%) anlamlandırmaya yönelik çalışmalara yer verilir. %100’den küçük olan yüzdelik
ifadeler ile sınırlı kalınır.
M.5.1.6.2. Bir yüzdelik ifadeyi aynı büyüklüğü temsil eden kesir ve ondalık gösterimle ilişkilendirir, bu gösterimleri
birbirine dönüştürür.
Sözü edilen ilişkileri anlamayı kolaylaştırıcı modellerle yapılacak çalışmalara yer verilir.
M.5.1.6.3. Kesir, ondalık ve yüzdelik gösterimlerle belirtilen çoklukları karşılaştırır.
M.5.1.6.4. Bir çokluğun belirtilen bir yüzdesine karşılık gelen miktarı bulur.
%100’den küçük olan yüzdelik ifadeler ile sınırlı kalınır. Belirli bir yüzdesi verilen çokluğu bulmaya
yönelik işlemlere girilmez.
M.5.2. GEOMETRİ VE ÖLÇME
M.5.2.1. Temel Geometrik Kavramlar ve Çizimler
Terimler veya kavramlar:
Dik açı, dar açı, geniş açı, paralellik, doğru, doğru parçası, ışın, dikme
Semboller: , // , AB, [AB], |AB|, [AB, AB, AB, AB, m(Â)
M.5.2.1.1. Doğru, doğru parçası, ışını açıklar ve sembolle gösterir.
Aynı düzlemdeki iki doğrunun birbirlerine göre durumları (kesişen, paralel, çakışık) ele alınarak sembolle
gösterilir.
M.5.2.1.2. Bir noktanın diğer bir noktaya göre konumunu yön ve birim kullanarak ifade eder.
a) Kareli, noktalı kâğıt vb. üzerinde çalışmalar yapılır. Örneğin A noktası B noktasının 3 birim sağında/
solunda; 2 birim aşağısında/ yukarısında; 4 birim sağının/solunun 2 birim yukarısında/aşağısında gibi
b) Gerçek hayat durumları ile ilgili örneklere de yer verilir.

M.5.2.1.3. Bir doğru parçasına eşit uzunlukta doğru parçaları çizer.
Kareli, noktalı kâğıt vb. üzerinde yatay, dikey veya eğik konumlu doğru parçaları üzerinde çalışılması
sağlanmalıdır.
M.5.2.1.4. 90°’lik bir açıyı referans alarak dar, dik ve geniş açıları oluşturur; oluşturulmuş bir açının dar, dik ya da
geniş açılı olduğunu belirler.
a) Kareli, noktalı kâğıt vb. üzerinde çalışmalar yapılır.
b) Açıları belirlerken veya oluştururken referans olarak bir kâğıdın köşesinin, gönyenin veya bir açıölçerin
kullanılması istenebilir.
c) Açılar isimlendirilerek ifade edilir.
M.5.2.1.5. Bir doğruya üzerindeki veya dışındaki bir noktadan dikme çizer.
M.5.2.1.6. Bir doğru parçasına paralel doğru parçaları inşa eder, çizilmiş doğru parçalarının paralel olup olmadı-
ğını yorumlar.
a) Kareli, noktalı kâğıt vb. üzerinde çalışmalar yapılır.
b) Gerçek hayat durumlarıyla ilişkilendirmeye yönelik çalışmalara da yer verilir.
M.5.2.2. Üçgen ve Dörtgenler
Terimler veya kavramlar:
çokgen, dik açılı üçgen, dar açılı üçgen, geniş açılı üçgen, ikizkenar üçgen, eşkenar üçgen, çeşitkenar üçgen, paralelkenar, eşkenar dörtgen, yamuk, köşegen
Semboller: ABC
M.5.2.2.1. Çokgenleri isimlendirir, oluşturur ve temel elemanlarını tanır.
a) Temel elemanlar olarak kenar, köşe, iç açı ve köşegen tanıtılır.
b) Yalnızca dışbükey çokgenler ele alınır.
c) İç açıların toplamı ve köşegen sayısına değinilmez.
M.5.2.2.2. Açılarına ve kenarlarına göre üçgenler oluşturur, oluşturulmuş farklı üçgenleri kenar ve açı özelliklerine
göre sınıflandırır.
a) Kareli, noktalı, izometrik kâğıt vb. üzerinde çalışmalar yapılır.
b) Açılarına göre üçgen oluştururken veya yorumlarken 90°’lik bir açının bir kâğıdın köşesi, gönye,
açıölçer veya benzeri bir araç kullanılarak belirlenmesi çalışmalarına yer verilir.
M.5.2.2.3. Dikdörtgen, paralelkenar, eşkenar dörtgen ve yamuğun temel elemanlarını belirler ve çizer.
a) Açı, kenar ve köşegen özellikleri üzerinde durulur.
b) Kareli ve izometrik kâğıtların yanı sıra dinamik geometri yazılımları ile özel dörtgenlerin dinamik
incelemelerine yönelik sınıf içi çalışmalara yer verilebilir.
c) Kare, dikdörtgenin özel bir durumu olarak ele alınır.
ç) Yamuk tanıtılırken kenar çiftlerinden en az birinin paralel olduğu vurgulanır.
d) Yamuk çeşitlerine girilmez.

M.5.2.2.4. Üçgen ve dörtgenlerin iç açılarının ölçüleri toplamını belirler ve verilmeyen açıyı bulur.
İç açıların ölçüleri toplamı bulunurken kâğıt katlama veya uygun modellerle yapılacak etkinliklere yer verilir.
M.5.2.3. Uzunluk ve Zaman Ölçme
Terimler veya kavramlar:
desimetre, dekametre, hektometre,
Semboller: dm, dam, hm
M.5.2.3.1. Uzunluk ölçme birimlerini tanır; metre-kilometre, metre-desimetre-santimetre-milimetre birimlerini birbirine dönüştürür ve ilgili problemleri çözer.
Ondalık kısmı en çok üç basamaklı olan sayılarla sınırlı kalınır.
M.5.2.3.2. Üçgen ve dörtgenlerin çevre uzunluklarını hesaplar, verilen bir çevre uzunluğuna sahip farklı şekiller
oluşturur.
Çevre uzunluğunu tahmin etmeye yönelik çalışmalara yer verilir.
M.5.2.3.3. Zaman ölçme birimlerini tanır, birbirine dönüştürür ve ilgili problemleri çözer.
a) Saniye, dakika, saat, gün, hafta, ay ve yıl ele alınır.
b) Zaman yönetimi ile ilgili problemler ele alınır.
M.5.2.4. Alan Ölçme
Terimler veya kavramlar:
santimetrekare, metrekare
Semboller: cm², m²
M.5.2.4.1. Dikdörtgenin alanını hesaplar, santimetrekare ve metrekareyi kullanır.
a) Kare, dikdörtgenin özel bir durumu olarak ele alınır.
b) Ayrıca alan kavramını anlamlandırmaya yönelik çalışmalara yer verilir.
M.5.2.4.2. Belirlenen bir alanı santimetrekare ve metrekare birimleriyle tahmin eder.
Tahminlerin ölçme yaparak kontrol edilmesine yönelik çalışmalara yer verilir.
M.5.2.4.3. Verilen bir alana sahip farklı dikdörtgenler oluşturur.
a) Kenar uzunlukları doğal sayı olacak biçimde sınırlandırılır.
b) Geometri tahtası, noktalı kâğıt ve benzeri araçlarla yapılan çalışmalara yer verilir.
M.5.2.4.4. Dikdörtgenin alanını hesaplamayı gerektiren problemleri çözer.
M.5.2.5. Geometrik Cisimler
M.5.2.5.1.
Dikdörtgenler prizmasını tanır ve temel elemanlarını belirler.
Kare prizma ve küp, dikdörtgenler prizmasının özel durumları olarak ele alınır.
M.5.2.5.2. Dikdörtgenler prizmasının yüzey açınımlarını çizer ve verilen farklı açınımların dikdörtgenler prizması-
na ait olup olmadığına karar verir.
a) Küp ve kare prizma, dikdörtgenler prizmasının özel durumları olarak ele alınır.
b) Somut modellerle yapılacak çalışmalara yer verilir.

c) Uygun bilgi ve iletişim teknolojileri ile yapılacak etkileşimli çalışmalara yer verilebilir. Üç boyutlu
dinamik geometri yazılımlarından yararlanılabilir.
M.5.2.5.3. Dikdörtgenler prizmasının yüzey alanını hesaplamayı gerektiren problemleri çözer.
Küp ve kare prizma, dikdörtgenler prizmasının özel durumları olarak ele alınır.
M.5.3. VERİ İŞLEME
M.5.3.1. Veri Toplama ve Değerlendirme
M.5.3.1.1.
Veri toplamayı gerektiren araştırma soruları oluşturur.
a) Araştırma sorusu oluşturabilmek için “Bir sınıftaki öğrencilerin en sevdiği meyvelerin neler olduğu bir
araştırma sorusudur ancak bir kişinin en sevdiği meyvenin ne olduğu sorusu araştırma sorusu değildir.”
gibi örnekler üzerinde durulur.
b) Araştırma soruları oluşturulurken çevre bilinci, tutumluluk, yardımlaşma, israftan kaçınma vb. konulara
yer verilir.
M.5.3.1.2. Araştırma sorularına ilişkin verileri toplar, sıklık tablosu ve sütun grafğiyle gösterir.
a) Tek özelliğe yönelik süreksiz veri gruplarıyla sınırlı kalınır. Sürekli ve süreksiz kavramlara girilmez.
b) Verileri düzenlemek ve grafkle göstermek için gerektiğinde uygun bilgi ve iletişim teknolojilerinden
yararlanılır.
M.5.3.1.3. Sıklık tablosu veya sütun grafği ile gösterilmiş verileri yorumlamaya yönelik problemleri çözer.
Yanlış yorumlamalara yol açan sütun grafkleri de incelenir

LGS SINAVINA KALAN SÜRE
6 HAZİRAN 2021
UA-110949892-2